
DRAFT
CIS CO BOL

OPERATING guide

VERSION ■<

CIS COBOL

OPERATING GUIDE

For Use With the

BASF 7100 Series BOS Operating Systems

Version 4

Micro Focus Limited Release 3

October 1979

Not to be copied without the consent of Micro Focus Ltd.

x (Addendum 1)

COBOL is an industry language and is not the property of any company or

group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the

CODASYL Programming Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the

Univac I and II, Data Automation Systems copyrighted 1958, 1959, by

Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013
copyrighted 1959 by IBM; FACT, DS127A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

have specifically authorised the use of this material in whole or in part,

in the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

BOS is a trademark of BASF

rz - \

I. MICRO FOCUS

Micro Focus ltd

58, Acacia Road,

St. Johns Wood,
London NW8 6AG

Telephone: 01 722 8843
Telex: 28536 MICROF G

© COPYRIGHT 1980 b» Micro Focus Ltd.

COBOL Release 4. 4
.W.V.V<W.V«.V«.VA/.W.V.V -v .V

A new Release of CIS-COBOL is now available. All known errors
occur ri nq in 4. 3 have been removed* some new features (e. g. symbolic
RTS error messages) have been added.

A special subroutine has been integrated by BASF. This routine
enables a COBOL program to:

- execute all FCS commands directly from COBOL
(copyfile* copy disk* erase*...)

- call MTX/80

These two functions can be used too to load self-written Assembler
programs and execute them either as subroutine (via ABSCAL) or even
as additional tasks. An available storage area for such routines is
from 23F0 to 29D4.

A demonstration program can be found on the distributed diskette
(IFACE. CBL). This program can be deleted at any time. The same is
true for program A3YNC which is the called Assembler subroutine.

On the 4.3 COBOL disk you found four F0RMS2 modules too (CHI. CH2*
GN1* GN2). Thus a CHECKOUT or GEN program - created by F0RMS2 - could
be compiled without having the F0RMS2 disk inserted. Since on the 4. 4

disk we have demonstration programs there was no space left for the
F0RMS2 routines. So if you want the exactly same COBOL disk: erase
(or copy to some other disk) these demo programs* then copy the above
FGRMS2 routines onto the 4.4 COBOL/RTS disk.

CIS COBOL OPERATING GUIDE

VERSION A

AMENDMENT RECORD

Amendment
Number Dated Inserted by Signature Date

I/jtok L,.lf Uj-(>([' fa f) - u

\

#■ >Lj~ frl

iii

PREFACE

This manual describes operating procedures for the BOS resident releases of
the CIS COBOL Compiler and run-time libraries. The compiler converts
CIS COBOL source code into an intermediate code which is then interpreted by

the Run-Time System. The manual describes the steps needed to compile a
program and then execute the compiled program, including all necessary

linkage, relocation, and run-time requirements. Operation of the run-time
Debug package is also included. A Screen Formatter program known as FORMS
is also available with CIS COBOL and its operation is described in a
separate manual.

MANUAL ORGANIZATION

Chapters 1 through 4 of this manual describe compiler features and general
procedures for linking, loading and execution of programs. Chapter 5
describes the operation of the configuration utility program CONFIG and
Chapter 6 describes the use of source output from the screen formatter
program FORMS in a CIS COBOL source program.

The appendices provide summarized information for reference purposes and

configuration information for various run-time environments.

AUDIENCE

This manual is intended for personnel already familiar with COBOL usage on
other equipment.•

This manual contains the following chapters and appendices:

"Chapter 1. Introduction", which gives a general description of the
CIS COBOL system, its input and output files, and the run-time libraries

provided with the compiler, plus the step-by-step outline of compilation,
linking, locating and executing of sample interactive programs.

Chapter 2. Compiler Controls", which describes compiler commands,
directives and listing formats.

Chapter 3. 'Run Time System Controls", which gives general instructions

for running programs, console operation, CRT screen handling and interactive
debugging.

"Chapter 4. Multilanguage CALL Facilities", which describes the facilities
available to invoke other COBOL programs or programs written in other
languages from a main program.

"Chapter 5. Incorporating FORMS Utility Output", which describes the use of
the FORMS screen formatting utility programs output.

Appendix A. Summary of Compiler and Run Time Directives", summarises the
compiler directives available in the CIS COBOL compiler.

"Appendix B. Compile-Time Errors", which lists all errors that can be
signalled during program compilation.

"Appendix C. Run-Time Errors", which lists all errors that can be signalled

during program execution.

"Appendix D. Operating Systems Errors", which is a listing of the error

messages issued by the BOS Operating System.

"Appendix E. Interactive Debug Command Summary", which summarises the
commands that can be used with the CIS COBOL Interactive Debug program.

"Appendix F. BOS Disk Files", which is a description of file naming

conventions and formats used by CIS COBOL under BOS.

"Appendix G. Example of User Run-Time Subroutines", which gives sample
user-programmed run-time subroutines.

"Appendix H. Supplied CALL Code Routines Example", which is a typical
print-out showing calls to supplied sample subroutines.

NOTATION IN THIS MANUAL

Throughout this manual the following notation' is" used to described'" iTuf
format of data input or output:

1. All words printed in small letters are generic terms representing names
which will be devised by the programmer.

2. When material is enclosed in square brackets [], it is an indication

that the material is an option which may be included or omitted as
required.

3* The symbol « after a CRT entry or command format in this manual
indicates that the data input terminator keys End of Message and Enter
must be pressed to enter the command, except for Interactive Debug
commands where it means press the Enter (without End of Message) or
Return.

Headings are presented in this manual in the following order of importance:

CHAPTER n 1

> Chapter Heading
TITLE)

ORDER ONE HEADING
ORDER TWO HEADING
Order Three Heading
Order Four Heading

Text 3 lines down

Order Five Heading: Text on same line

Numbers one (1) to nine (9) are written in text as letters e.g. one.
Numbers ten (10) upwards are written in text as numbers e.g. 12

Bars in the right hand margin indicate changes since Version 4 Release 2.

v

RELATED PUBLICATIONS

For details of the CIS COBOL Language, refer to the document!

CIS COBOL Language Reference Manual

For details of the BOS Operating System, Messages, and File Structures refer
to the BOS User manual.

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

GENERAL DESCRIPTION 1-1

GETTING STARTED WITH CIS COBOL 1-1

ISSUE DISK 1-1
THE COMPILER 1-2
THE RUN TIME SYSTEM 1-2
THE FORMS PROGRAM 1-2
THE DEMONSTRATION PROGRAMS 1-2
THE RUN TIME SUBROUTINES 1-2
FIRST STEPS' 1-2

Initialisation 1-3
Disk Initialisation 1-3
Compilation 1-3
Running the Demonstration Programs 1-4

Calculation of ir (PI) 1-4
Stock Control Program One

(Cursor Control) 1-4
Stock Control Program Two

(Data Input) 1-5

PROGRAM DEVELOPMENT CYCLE 1-5

CHAPTER 2.

COMPILER CONTROLS

COMMAND LINE SYNTAX 2-1

COMPILER DIRECTIVES 2-1

ANS 2-1
RESEQ 2-1
NOINT 2-1
NOLIST 2-1
COPYLIST
NOFORM

ERRLIST
LIST
FORM

NOECHO

EXCLUDED COMBINATIONS

2-2.

2-2
2-2.

2-2
2-2
2-2
2-2

vii

SUMMARY INFORMATION ON CRT 2-3

LISTING FORMATS 2-4

CHAPTER 3

RUN TIME SYSTEM CONTROLS

RUN TIME DIRECTIVES

COMMAND LINE SYNTAX

Load Parameters 3-1

Switch Parameter 3-2
Standard ANSI COBOL Debug

Switch Parameter 3-2
Link Parameter 3-2
Program Parameters 3-3

COMMAND LINE EXAMPLES 3-3

INTERACTION IN APPLICATION PROGRAMS 3-4

CRT SCREEN HANDLING 3-4

Screen Layout and Format Facilities 3-4

Cursor Control Facilities 3-5

INTERACTIVE DEBUGGING 3-6
f

THE P COMMAND 3-6
THE G COMMAND 3-7
THE X COMMAND 3-7
THE A COMMAND 3-8
THE S COMMAND 3-9
THE COMMAND ' 3-9

THE T COMMAND 3-9
DEBUG MACRO COMMANDS 3-10

The L Command 3-10
The g Command 3-10
The C Command 3-10

The ; Command 3-10

CHAPTER 4

MULTILANGUAGE CALL FACILITIES

INTRODUCTION 4-1

COBOL PROGRAMS - CALL 4-1

THE RUN UNIT 4-1
FORMAT OF CIS COBOL "CALL" 4-1

FORM OF CIS COBOL PROGRAMS 4-1
RUN TIME PROGRAM LINKAGE 4-1
EXAMPLE LINKAGE 4-2

LIMITATIONS OF CALL 4-2

viii

RUN TIME SUBROUTINES - CALL 4-3

USER SUBROUTINES 4-3

ASSEMBLER SUBROUTINES PROVIDED 4-3

The CHAIN Subroutine 4-4
The PEEK Subroutine 4-5
The GET Subroutine 4-6
The PUT Subroutine 4-7
The ABSCAL Subroutine 4-8

CHAPTER 5

INCORPORATING FORMS UTILITY PROGRAM OUTPUT

INTRODUCTION 5-1
SCREEN LAYOUT FACILITY 5_1

MAJOR FACILITIES-

CIS COBOL PROGRAMMING FOR FORMS SCREEN LAYOUT 5-1

GENERATED PROGRAMS 5_2

CIS COBOL PROGRAMMING FOR FORMS GENERATED FILES 5-2

APPENDIX A

SUMMARY OF COMPILER DIRECTIVES

APPENDIX B

COMPILE TIME ERRORS

APPENDIX C

RUN TIME ERRORS

APPENDIX D

OPERATING SYSTEM ERRORS

APPENDIX E

INTERACTIVE DEBUG COMMAND SUMMARY

APPENDIX F

BOS DISK FILES

ix

APPENDIX G

Table

1-1
2-1
3-1

EXAMPLE OF USER RUN TIME SUBROUTINES

APPENDIX H

SUPPLIED CALL CODE ROUTINES
EXAMPLE

TABLES

Title Page

Issue Disk Contents 1-1

Excluded Combinations of Directives 2-3
CRT Cursor Control Keys 3-5

*

x

CHAPTER 1

INTRODUCTION

GENERAL DESCRIPTION

COBOL (Common Business Oriented Language) is the most widely and extensively
used language for the programming of commercial and administrative data
processing.

CIS COBOL is a Compact, Interactive and Standard COBOL language system for

use on the BASF 7100 microcomputers with CRT and floppy diskettes under

control of the BOS Operating System.

The CIS COBOL compilation system converts CIS COBOL source code into an
intermediate code which is then interpreted by a Run Time System (RTS).

CIS COBOL programs can be created using the standard BOS text editor to
create the CIS COBOL source files. The Compiler compiles the source
programs from here, or they are entered interactively direct from the CRT,

After compilation is finished, the Run-Time system is linked with the
compiled output to form a running user program. A listing of the CIS COBOL
program is provided by the Compiler during compilation. Any error messages
are included in this listing. Interactive Debugging facilities are provided
for runtime use.

The CIS COBOL System also incorporates a powerful utility program called
FORMS.

The purpose of FORMS is to allow the user to define the screen layouts to be
used in a CIS COBOL application, by simply keying text at the keyboard and
so producing model forms on the CRT. The forms can be automatically used to
generate a program which will maintain files with the form data in them.

It provides an ideal medium of communication between the programmer and the
end user who may know nothing of computers. The minimum storage
requirements^ for? FORMS is 64k byte?,.

GETTING STARTED WITH CIS COBOL

ISSUE DISC

Each user is provided with the software that makes up the development system
described above on a CIS COBOL Issue Disk

A CIS COBOL Issue Disk contains the software listed in Table 1-1.

Table 1-1. Issue Disk Contents.

COMPILER RUN TIME
SYSTEM .

DEMONSTRATION
PROGRAMS

RUN TIME

SUBROUTINES

COBOL

COBOL.101
COBOL.102

COBOL.103
COBOL.104

RTS PI.CBL

ST0CK1.CBL
ST0CK2.CBL

CALL.ASM

CALL.HEX
CALL.PRN

1 - 1

If your issue disk does not include these items, refer to your BASF
Distributor

THE COMPILER

The CIS COBOL Compiler is overlaid and loads its overlays from the drive
containing COBOL. The root is contained in COBOL and the overlays are
contained in the other COBOL files.

THE RUN TIME SYSTEM

The Run Time System (RTS) executes the intermediate code output from the
compiler. In addition to standard ANSI COBOL statements, CIS COBOL contains
many extensions for use with interactive programs.

THE DEMONSTRATION PROGRAMS

PI.CBL, STOCK1.CBL and ST0CK2.CBL are simple demonstration programs,
supplied in source form, which show many of the facilities present in CIS
COBOL, and which can also be used by the newcomer to familiarise himself
with the system.

THE RUN TIME SUBROUTINES

These modules are supplied to provide an example of the use to which this

COBOL CALL facility can be put in implementing RUN TIME Sub-Routines (See
Chapter 4). A copy of the list file can be found in Appendix G.

\

1 - 2

FIRST STEPS

Initialisation

Initialise and format system disks as required (see DISK UTILISATION below)
and COPY THE CONTENTS of the Issue'' dl'skT to becotfe' a'- wot'king" CIS COBOL
system.

Disk Utilisation

CIS COBOL can be used on a single diskette drive system but is also designed
to take full advantage of two-drive systems.

It should be remembered that if only one drive is to be used for compilation
and running, a clean system disk with only the BOS system on it should be
used with single density disks, to allow sufficient space to receive the
CIS COBOL system.

In normal two-drive use, however, it can be beneficial to copy the compiler
to, one system disk ahd'the%'Run-Time. Syst'effiV (FTS) to another’. By defArilt' the"
intermediate code is output to the disk containing the source at compilation
and if, therefore, this also contains the RTS, the program can immediately
be run. It is the user's responsibility to decide on the most efficient
disk allocation for this system.

Compilation

Compile all the demonstration programs. These have extension .CBL.

EXAMPLE:

ED ITT RUN COBOL :0 ST0CK1.CBL«

**CIS COBOL VA.3 COPYRIGHT (C) 1979 MICRO FOCUS LTD
* COMPILING ST0CK1.CBL

**ERRORS=00000 DATA=00636 CODE=00222 DICT=0042O:nnnnn END OF LIST

EDIT

NOTE:

All the examples in this manual assume that the CIS COBOL software diskette
is loaded in drive 0. If the diskette was loaded in drive 1, the first line
in the above example would be:

EDIT T RUN COBOL: 1 ST0CK1.CBL«

A directory listing of the disk will show that two new files exist, namely
ST0CK1.LST which is the list file, and ST0CK1.INT which contains the
intermediate code. Similar procedures should be followed for ST0CK2.CBL and
PI.CBL.

Note that ST0CK2 has a bug in it which is present to show error Formats and

is for demonstration purposes only. It does not affect the running of the
program.

1 - 3

The message produced by the error is:-

MOVE GET-INPUT TO TF-DATE.
103*****************

Running The Demonstration Programs

When the sample programs have been compiled and run, you have checked out
your disk and have mastered the fundamentals of CIS COBOL facilities.

Calculation of (PI)

EDIT T RUN RTS:(7 PI.INT«

This clears the screen, followed by -

CALCULATION OF PI

NEXT TERM IS 0.000000000000

PI IS 3.141592653589

EDIT r

During the execution of PI the next term changes as the iteration
progresses.

Stock Control Program One (Cursor Control)

ED ITT RUN RTS :0 STOCK l.INT«

This clears the screen, followed by -

STOCK CODE < >

DESCRIPTION < >
UNIT SIZE < >

This is a skeleton stock data entry program in which stock records are
created on a stock file in stock code order.

It allows the cursor control functions to be checked out. The operator has
the ability to "tab" the cursor forwards and backwards from one data input
field to the next. The cursor may be moved backwards and forwards
non-destructively one character position at a time in data input fields. It
may also be HOME to the first character position in the first data input
field. In addition there is a numeric validation on numeric fields which
permits only numeric characters to be entered, and an automatic left zero
fill on numeric fields. (See CURSOR CONTROL FACILITIES in Chapter 3 for
cursor control keys on the standard CRT)

It also create^ an indexed sequential file on disk called STOCK.IT.

To create a record, key the data into the unprotected areas defined by < >.
When a record is complete, press the RETURN key and the record will be

written to disk. The unprotected areas will then be space filled ready for

the next record to be entered, if the record has been correctly entered. If
the record remains displayed, the record was incorrectly keyed.

To terminate the run, enter spaces into the STOCK CODE field and press
RETURN.

This results in:

END OF PROGRAM

Stock Control Program Two (Data Input)

EDIT T RUN RTS :0 ST0CK2.INT«

This clears the screen followed by —

GOODS INWARD

STOCK CODE' < >
ORDER NO < >

DELIVERY DATE MM/DD/YY
NO OF UNITS < >

This is a skeleton stock data input program, in which the stock records
created by ST0CK1 can be accessed.

The same cursor control features are present as in ST0CK1.INT. Note that
the DELIVERY DATE has a different method of prompting than has so far been
us ed.

Terminate in the same way as for ST0CK1.

PROGRAM DEVELOPMENT CYCLE

The cycle for development and running of CIS COBOL application programs that

must be- performed by the programmer is_ as shown in Figure. 1—1.

1 - 5

PREPARATION:

The source programs are created

on diskette with the user's own
existing editor program, or is

keyed in directly on the CRT.

COMPILATION:

COBOL PROG.SRC...

... Loads the single pass

compiler to convert a source
program (PROG.SRC in this
example) into an interpreted
object form known as Inter¬
mediate Code (PROG.INT).
The user may specify the
file on which the listing
will appear. If this is a
disk file, it may be edited
to correct errors and used

as input for the next run
of the compiler.

Intermediate Code Files

RUNNING:

RUN PROG.INT...

... Loads the Run Time System
which in turn loads the
Intermediate Code. To aid

debugging, the CIS COBOL

interactive debugging facility
is available. This allows
the user to set break points,
examine and modify locations
and then continue execution.

Once loaded the programs run
to process the user files as

required by. the application and
controlled by the Operator
through the CRT.

Once the user program is fully

tested it may be permanently
linked to the Run Time System

by use of the option.
See Chapter 3.

-f)

Figure 1-1. Program Development Cycle

1-6

V

CHAPTER 2

COMPILER CONTROLS

COMMAND LINE SYNTAX

The command line format is:

RUN COBOL:0 filename [directives]«

COBOL is the name of the file which contains the compiler

filename is the optional name of the program which contains the CIS
COBOL source statements. If the filename is not given, the
console is taken as the input file.

directive is an optional sequence of CIS COBOL directives. Each

directive must be separated by one or more spaces. If the

sequence is too long to fit on one line of the screen then it
may be continued on a subsequent line'by'' typing' sc'K' siSvefiWS:
sign "&" followed by carriage return. A particular directive
may be on one line only. Where directives have brackets the
left-hand bracket may occur zero, one or more spaces after
the body of the directive. To terminate the sequence, press
return.

COMPILER DIRECTIVES

A description of each of the available compiler directives follows:

ANS

If this option is specified then the compiler will accept only those CIS
COBOL language statements that conform to the ANS74 COBOL standard
X.23 1974. The default is "extended" which allows the CIS COBOL extensions

and also .relaxes the requirement, for the COBOL, "rml tape,"1 statement's mzi\, as.
DIVISION headers.

RESEQ

If specified, the compiler generates COBOL sequence numbers, re—numbering
each line in increments of 10. The default is that sequence numbers are
ignored and used for documentation purposes only.

NOINT

No intermediate code file is output. The compiler is in effect used for
syntax checking only. The default is that intermediate code is output.

NOLIST

No list file is produced; used for fast compilation of "clean" programs
The default is a full list.

2 - i

COPYLIST

The contents of the file(s) nominated in COPY statements are listed. The
list file page headings will contain the name of any COPY file open at the
time a page heading is output.

NOFORM

No form feed or page headings are to be output by the Compiler in the list
file. The default is headings are output.

ERRLIST

The listing is limited to those COBOL lines containing syntax errors
together with the associated error message(s). The default is a full list.

INT (external-file-name)

Specifies the file to which the intermediate code is to be directed. The
default is: source-file.INT.

LIST (external-file-name)

Specifies the file to which the listing is to be directed (this may be a

printing device, ie. console or printer or a disk file) The default is:
source-file.LST

For list to console use: LIST(:C0:)

For list to line printer use: LIST(:LP:) (Parallel port)

LIST(:LS:) (Serial port)
(See Appendix F for
setting up a serial port)

FORM (integer)

Specifies the number of COBOL lines per page of listing (minimum 5). The
default is 60.

N0ECH0

Error lines are echoed on the console unless this directive is specified.

DATE (string)

The comment-entry in the DATE-COMPILED paragraph, if present in the program

undergoing compilation, is replaced in its entirety by the character string

as entered between parentheses in the DATE compiler directive.

EXCLUDED COMBINATIONS

Certain of these directives may not be used in combination. Table 2-1 shows
the directives that are excluded if the directive shown adjacent in the left
hand column is specified

2-2

Table 2-1. Excluded Combinations of Directives

DIRECTIVE EXCLUDED DIRECTIVES

NOLIST LIST
NOFORM
FORM
RESEQ

COPYLIST

ERRLIST

ERRLIST RESEQ

COPYLIST

SUMMARY INFORMATION ON CRT

The general format of the basic command line is:

RUN COBOL:(7 filename [directives]^

and the Compiler will reply with:

**CIS COBOL Vv.r

where v is the version number and r is the release number.

Each directive is then acknowledged by the Compiler on a separate line, and
is either ACCEPTED or REJECTED. After all the directives have been
acknowledged, the Compiler opens its files and starts to compile. At this
point it will display the message:

COMPILING filename

If any file fails to open correctly, the Compiler will display:

filename FAILED TO, .OPEN

The compilation will be aborted, returning control to the operating system.

When the compilation is complete the Compiler displays the message:

**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmmm:nnnnn

where:

ERRORS - denotes the number of errors
found

DATA - denotes the size of RAM required i.e. .
data area of the generated program

CODE - denotes the size of ROM required i.e.

code area of the generated
program

denotes the number of bytes used and

the number remaining in the data dictionary.
2-3

DICT

LISTING FORMATS

The general layout of the list file is as follows:

**CIS COBOL Vv.r filename
icic

statement 1

PAGE: nnnn

HHHH

statement n HHHH

**CIS COBOL V4.3 COMPILER COPYRIGHT (C) 1978 MICRO FOCUS LTD URN AA/0300/BA

**ERRORS=nnnnn DATA=nnnnn CODE=nnnnn DICT=mmmmm:nnnnn END OF LIST

The first two lines of title Information are repeated for each page.
The final line is the same as on the CRT display. The value denoted by
HHHH is a hexadecimal value denoting the address of each dataname or
procedure statement. Addresses of datanames are relative to the start .N
of the data area, while addresses of procedure statements are relative j
to the start of the code area (There is an overhead at the start of the
data area, and a few bytes of initialisation code at the start of the
procedure area for each SELECT statement).

V':\

CHAPTER 3

RUN TIME SYSTEM CONTROLS

RUN-TIME DIRECTIVES

COMMAND LINE SYNTAX

The command line syntax for running a CIS COBOL object program is as
follows:

RUN [load param] [switch param] [link param] filename [program paramsj

filename is the name of the intermediate code file. File and device
conventions for CP/M are given in Appendix F. RUN must have at least one
space keyed after it, and filename must have either a space or RETURN keyed

after it. The parameters need not have spaces keyed after them. An example
of the whole RUN command line is given later in this Chapter.

Load Parameters

The optional load parameter provides the Run Time System loader with the
load point for the intermediate code in memory. The user has the option to

overlay optional modules to conserve program space. Additionally the CIS

The default load position excludes the Debug module. It may be included by
using the parameter . +D . This also implies that Indexed Sequential is
included.

If no load parameter is supplied then the intermediate code will be loaded
to exclude Debug but retain the 1-0 packages.

Switch Parameter

CIS COBOL includes the facility of controlling events in a program at run
time depending on whether or not programmable switches are set by the

See ?! descriPtion of the SPECIAL-NAMES paragraph in the CIS
COBOL Language Reference manual. The operator sets these switches at run
time by use of the Switch Parameter to the RUN command. The general format
or tne Switch Parameter isi

_<W{nl}[[-I[lid”2]-”)

where:

[] denotes an optional item

n denotes a choice

nl and n2 are any numbers in the range 0-7. They

can be specified in any order and the last
appearance of any specific number takes
precedence.

see Standard ANSI COBOL Debug Switch Parameter below

+ or “ - set the switch nl, n2, etc. on or off

respectively. The default is that all
switches are off initially.

• ” denotes that the preceding options enclosed
. in the outermost brackets can be repeated.

See EXAMPLES later in this Chapter.

Standard ANSI COBOL Debug Switch Parameter

Users may also include a parameter to invoke the standard ANSI COBOL Debug
module, whether or not the CIS COBOL Interactive Debug extension to ANSI
COBOL is invoked. (See the Language Reference Manual for a description of
the Debug facilities)'.

To include the standard ANSI Debug facility a Run Time switch is required.
The format is as for a normal switch parameter (see Switch Parameter above),

but the numeric switch character is replaced by D. See also EXAMPLES later
in this chapter.

Link Parameter

When the program is fully tested it may be linked with the Run Time System
to produce an executable program that can be directly loaded. This is
achieved by including the parameter "=*" to the Run Time System (see the
EXAMPLE overleaf). When the intermediate code file has been loaded

(following the lines above) a binary file with the filename SAVE is produced
from the current store image. It is essential to rename the SAVE file, from
which to load directly, to prevent it being overwritten on the next use of
' parameter.

See the BOS operating documentation for details of the file renaming
command.

Program Parameters

These are any parameters required by the program, they can be read in on the
console file device :CI:.

COMMAND LINE EXAMPLES

1. The directive

RUN RTS:0 PROG.INT: 1 1 2«

loads the program PROG from the intermediate file produced by the
compiler and passes the user program parameters 1 and 2 to the program
PROG. The 1-0 packages are included and Debug is omitted.

2. The directive

RUN PROG:0«

loads the PROG program Including, the 1-0 packages but omitting Debug*
PROG must have been previously linked by the "=" link parameter.

If it is required to load the sample program ST0CK1 in future, instead
of the RUN command given in Chapter 1 (A>RUN STOCKl.INT), the following
command could be entered:

RUN RTS:0 = STOCKl.INT«

followed by the REName command.
4

In subsequent loads only the command RUN STOCKl:n« would then be
required.

3. The directive

RUN RTS:0 +D (+l+2,+3) = PR0G.INT«

loads the program PROG with interactive CIS COBOL Debug and the 1-0
packages, programmable switches 1, 2 and 3 are set, and a binary file
of the program PROG is created, which can subsequently be loaded
directly. A SAVE file is created and the interactive CIS COBOL Debug

display will appear on the CRT when the saved binary PROG is
run.

4. The directive

RUN RTS:0 -R (-2 +5-7+7) PROG.INT«

loads the program PROG from the intermediate file produced by the
compiler, without any optional packages and with programmable switches
5 and 7 on and 2 off. Note that the last setting of switch 7 is
accepted. Switches 1, 3, 4 and 6 are off by default.

3-3

5. The directive

RUN RTS :0 (+D) PROG.INT«

loads the program PROG from the intermediate code file produced by the
compiler with the standard COBOL ANSI Debug module invoked.

6. The directive

RUN RTS:# +D (+2,+4 +D) PROG.INT«

loads the program PROG with interactive CIS COBOL Debug and the 1-0
packages, with programmable switches 2 and 4 set, and with the standard
ANSI COBOL Debug module invoked.

INTERACTION IN APPLICATION PROGRAMS

CRT SCREEN HANDLING

COBOL is traditionally a batch processing language; CIS COBOL extends the
language to make it interactive. CIS COBOL offers many facilities for
automatic formatting of a CRT screen and facilitates keying of input.

The CIS COBOL programmer can specify areas of the screen into which the

operator is able to key data, and also whether such data is numeric or
alphanumeric. This is achieved by defining the screen as a record in the
DATA DIVISION in which the data fieldfe correspond to the input area and
FILLER'S correspond to the rest of the screen.

»

An ACCEPT statement nominates a record description, which permits input to
the character positions corresponding to variables identifed by data-names.
Conversely, a DISPLAY statement outputs only from non-FILLER fields in the

record description which it nominates. The programmer can thus easily build
up complex conversations for data entry and transaction processing.

While data is being keyed, the operator has full cursor manipulation
facilities, each variable acting as a tab stop. Non—numeric digits may not
be entered Into fields defined as numeric. Finally, when the operator has
checked that the data is correct, the RETURN key is depressed and the data
becomes available to the program. Because all characters are transferred to
the appropriate area as they are keyed in there is no transmission delay.

Screen Layout and Format Facilities

The following facilities are available for screen layout and formatting:

* Screen as a record description

* FILLER

* REDEFINES

* AT line column

* CURSOR addressing

* Character highlighting

* Clear screen

* Numeric validation of PIC 9(n) fields

* Automatic editing of numeric edited data-items

* De-editing of numeric edited to numeric data-items

Cursor Control Facilities

During execution of ACCEPT statements the cursor is manipulated on the CRT
screen by the cursor control keys on the console keyboard as shown in Table
3-1.

Table 3-1. CRT Cursor Control Keys

Function Keys^

Home HOME

Tab forward a field \
Tab backward a field t
Forward Space

Backward Space —

Column Tab TAB

2
Left Zero

•

Return RETURN

or ENTER3

1 - Where CTL is specified the operator must press the CTL
key, hold it down and simultaneously press the character
key.

2 - The " for left zero fill is _ 11 II a , when

DECIMAL-POINT IS COMMA

is specified in the user program

3 - Note that when using Debug commands, « represents
pressing the Enter key (without End of Message) or the 1
Return Key.

—————-----

3-5

INTERACTIVE DEBUGGING

Two levels^ of debugging are available to the programmer. The first involves

optional "debugging lines" that are included if the "DEBUGGING MODE" switch
is present in the "SOURCE-COMPUTER" sentence. The second is the interactive
Debug package that is included at run-time under the control of the user
(see section on Run Time System).

If Debug is included in the Run Time System, it will announce its presence
when the program is loaded as follows:

RUN RTS:0 +D STOCKl.INT«

Debug Mark 3.1 -title

> -prompt

The user now has the following commands available:

P

G

X

D

A

S

/

T

L

M

$

C

Displays the current program counter (p-c).

Breakpoint at specified address.

Execute one CIS COBOL statement at a tine.

Display bytes in the Data Division

Replace contents of a memory location by a hexadecimal value
or ASCII character.

- Set start of block for correction or display.

Display bytes in block above.

- Change bytes in block above.

Trace paragraphs up to breakpoint specified.

- Output one CR LF on the CRT

- Define Debug command macro with name specified

- End macro definition

- Displays specified character on the CRT

; - Precedes comment to describe a macro just entered.

A description of the use of each of these Debug commands follows.

THE P COMMAND

The P command displays the address at which the program counter
currently points i.e. where the current instruction is in the Procedure
Division code of a program. This hexadecimal address is that printed in the
right hand column of a program existing.

EXAMPLE:

At the start of a program the p-c is at 0000 as shown below:

>P« -command
0000 -current p-c

> -prompt

NOTES:

1 • The location given by the 'P1 command is relative to the start of the
PROCEDURE DIVISION. All numbers in the Debug package are expressed as
hexadecimal values.

THE G COMMAND

The G command executes from the current p-c until the p-c reaches the value
in the parameter to 'G*. If this value is not the address of an executed
instruction, the breakpoint is never reached and the program continues.

EXAMPLE:-

If a breakpoint is required at PARA-22 in the following code:

PARA-22.

ADD 1 TO COUNT.
MOVE FIELD-1 TO.FIELD-2.

017A

017B - hex addresses
018C

the following command is typed:

>G 017A«
>

The display of the second question mark above indicates that the G command
has executed completely and thus the breakpoint has been reached

j
NOTE:

Exactly four hexadecimal digits must be keyed for an address value.

A check on the current address at this point by use of the P command would be
as follows:

>P«

017A -returns p-c >

THE X COMMAND

When a suspected error is reached, single instructions can be stepped
through one . at a time by use of the ’X* command. After each COBOL
instruction is executed, the hexadecimal number in the right-hand column is
the address of the first statement on a line. Where COBOL operations are

3-7

made up of several individual primitive instructions, DEBUG may appear to

halt in the middle of a line. If this occurs, the RETURN is pressed again.

EXAMPLE;

error occurred in the MOVE instruction the X command sequence
would be shown as follows:

>X«

018C
>

To check the contents of "FIELD—2" before and after the move for code in the
"DATA DIVISION" the display would be;

02 FIELD-1 PIC XXX VALUE "ABC". 0030
02 FIELD-2 PIC XXX VALUE "XYZ". 0033
02 FIELD-3 PIC X(80) VALUE SPACE. 0036

To display bytes in the DATA DIVISION, the 'D' command can be used. This

displays 16 bytes from the address specified (again the address is derived
from the information on the listing). It displays each byte as a
hexadecimal value plus an ASCII equivalent if it is printable.

EXAMPLE:

X) 0030«

41-A 42-B 43-C 58-X 59-Y 5A-Z 20- 20- 20- .

FIELD-1 FIELD-2 FIELD-3
>

If the MOVE and is then executed and re-examined the following display
results:

>X«

0190
X) 0030«

41-A 42-B 43-C 41-A 42-B 43-C 20- 20- 20- .

THE A COMMAND

The "A" command Is used to amend data at a specified memory location.

EXAMPLE:

To replace the first character "A" of FIELD-1 by "G". The value supplied may
be a two character hex value or an ASCII character preceded by quote eg "G

or 47.

>A 0030 47« -amend byte
X) 0030«

47-G 42-B 43-C 41-A 42-B 43-C 20- 20- 20- .
>

3-8

This correction facility allows continued running even if a bug has produced

an erroneous result.

THE S COMMAND

Where a number of corrections are required, DEBUG allows specification
of a working register which contains an address. This address can be set or
incremented and the contents can be displayed or modified immediately by use
of the 'S’ command. The address and contents can then be displayed by
keying

EXAMPLE:

To display the first byte of FIELD-1 operation would be as follows:

>5 0030« -load address
>/« -display

0030 47G
>

THE '.» COMMAND

To amend the byte at the current location is used; this also increments
the working register.

EXAMPLE:

To change FIELD1 to "DEF" the display would be:
»

>S 0030« -load address
>.44.45.4 6« —modify
X) 0030«

44-D 45-E 36-F .
>

To increment only the working register use

THE T COMMAND

An advanced form of the 'G* command is the 'T1 command. This also executes
up to a breakpoint in the PROCEDURE DIVISION, but also prints the address of
each paragraph encountered.

EXAMPLE:

>T 017B« trace up to 017B

DEBUG MACRO COMMANDS

The user will find that some Debug command sequences are used often when

debugging. If these sequences are long it can become tiresome typing them
in. To overcome this and to allow the development of complex debugging
sequences Debug permits the definition of macros comprised both of basic
operations and other macros. Macros are given names of one character.

The M Command

Macros are introduced by the rMf command followed immediately by the macro
name.

EXAMPLE:

To define a macro to execute up to 018C, display the value at 0030, then
single-step and display again, the following would be typed:

>MZ G 018C D0030 L X D 0030 $«
>
To invoke this macro its name is typed as follows:

>Z«
41-A 42-B 43-C 58-X 59-Y 5A-Z . First display
0190

41-A 42-B 43—C 41-A 42-B 43—C . Second display

>

There are two other commands introduced in this macro: 'L* and '$*.

The L Command

The 'L' command merely forces a carriage return and line feed to be output
on the console.

The $ Command

The command ends a macro definition.

The C Command

To allow macro writers to output characters to the console,
is provided. This outputs its parameter on the console

*

EXAMPLE:

the command 'C'

>C ”A«

A
>

The ; Command

To improve readability of macros, comments may be inserted,
introduced by the character ’;' and terminated by carriage return.

These are

EXAMPLE:

>MZ D 0030 X L D 0030 $; Run macro«

Macro names must be letters only. Lower case letters are converted
internally to upper case.

If an error is made in typing in a macro then it may be reentered However,
there is only a finite amount of macro space and space is not released if a
macro is reentered. If the space runs out or the maximum nesting of macros
is exceeded then the message STACK OVERFLOW will result.

EXAMPLE:

>MZ Z$; macro to crash system«
>Z«

After the crash has occurred, the Debug system will return to command mode
and will generally tidy up the stack to allow the user to continue. However,
if more serious crashes occur i.e. those with no message, then the system
will not recover.'

For full details of Debug commands see Appendix E.

CHAPTER 4
,7^

INTRODUCTION

MULTILANGUAGE CALL FACILITIES

CIS COBOL enables other COBOL programs to be called from a main application
program, and also enables programs written in other languages to be called
from a main COBOL application program.

COBOL PROGRAMS - CALL

THE RUN UNIT

An application written in COBOL may be arranged into a number of separate

COBOL programs which communicate and invoke each other by use of the COBOL
"CALL" verb.

FORMAT OF CIS COBOL "CALL"

The general format of the CIS COBOL verb is given in the CIS COBOL Language
Reference Manual.

FORM OF CIS COBOL PROGRAMS

Each program in an CIS COBOL application suite must be written in COBOL and

with the exception of the main program should have a Linkage Section in the
Data Division with which to communicate with other COBOL programs.

Any COBOL program other than the main program must be compiled and its
intermediate code placed on a disk which is accessed at run time. The main
program may be in intermediate code and named as a parameter to RUN, or it
may be linked to RUN in the manner described earlier under Run-Time
Directives.

RUN TIME PROGRAM LINKAGE

Run time execution of the COBOL verb CALL depends on the parameter used by
the CALL. COBOL programs and assembler code subroutines can be CALLed.

When the parameter is an alphanumeric quantity its value is interpreted as a
file-name and the appropriate file of intermediate code is loaded from disk
into memory and executed.

When the parameter is a numeric quantity, its value is interpreted as the
Linkage number to the Run-Time Subroutine Table and the corresponding
machine code subroutine is executed. The subroutine must be configured into

the RTS for the main program (See RUN-TIME SUBROUTINES - CALL in this
Chapter).

4-1

EXAMPLE LINKAGE

PROCEDURE DIVISION

CALL "SUBITM.INT.-a" USING . ..

CALL "10" USING ...

For the first CALL in this example to perform correctly the file SUBITM.INT
must be present on disk unit 0 and must contain a compiled COBOL program.
For the second CALL to perform correctly the RTS must contain a machine code
subroutine arranged as subroutine 10.

i

LIMITATIONS OF CALL

Any number of COBOL programs and assembler code subroutines can be CALLed
from a COBOL program. Operational limitations on CALL are as follows:

ode program file must be present on disk at
to the file.

Die in memory for the program to be loaded,

e pre-configured into the RTS.

:ed by noting that:

or at run time by suitable user-programmed
s.

1. The CALLed interTn<3rM '
ru~ - •

lie

whether a CALL has failed due to lack of

used storage when executed at run time.

large and complex CIS COBOL application
m designers in particular should realise
tion is not constrained by the intrinsic

RUN TIME SUBROUTINES - CALL

USER SUBROUTINES

The Run Time System is designed in such a way that the user may write and
include Assembler- or other language subroutines- that can be accessed using
the COBOL 'GALL" verb. (See Appendix G for example of use of this
facility). If you require to write your own non-COBOL subroutines contact
your BASF representative for further details.

ASSEMBLER SUBROUTINES PROVIDED BY MICRO FOCUS

The following standard

CHAIN
PEEK
POKE
GET
PUT
ABSCAL

CALL codes are available

CALL code "260"
CALL code "261"
CALL code "262"

CALL code "263"
CALL code "264"
CALL code "265-"

in the Run Time System.

\

The user may call these routines without making any alteration to the Run
Time System.

4-3

The CHAIN Subroutine V

The CHAIN call allows another linked CIS COBOL program or any program not
requiring parameters to be loaded and entered. There is no return to the
calling program.

A parameter list of one variable must be passed with CALL CHAIN:

* The data-name containing the file-name of the program to chain to.
The file-name must be terminated by at least one space character.

EXAMPLE:

WORKING-STORAGE SECTION.

03

03

NEXT-PROG PIC X(10) VALUE "PRIN2.0BJ ".

CHAIN PIC X(3) VALUE "260’

PROCEDURE DIVISION.

CALL CHAIN USING NEXT-PROG.

Ivji 0

The PEEK Subroutine

The PEEK call allows an absolute address location to be examined from a user

program. The CALL returns into the user area a copy of the 8 bit value at
the absolute address.

A parameter list of two variables must be passed with CALL PEEK:

* The five character data-name containing the absolute address
to be read from.

* The one character data-name where the value is to be read to.

EXAMPLE:

WORKING-STORAGE SECTION.

03 PEEK PIG X(3) VALUE "261".

03 ADDRESS PIC 9(5) VALUE 1234 .

03 DATA-VAL PIC X.

PROCEDURE DIVISION.

CALL PEEK USING ADDRESS, DATA-VAL

The GET Subroutine

The GET call allows a hardware port to be input from a user
CALL inputs the port and returns the 8 bit value to a user area

A parameter list of two variables must be passed with CALL GET:

* The three character data-name containing the port
from.

* The one character data-name to be input to.

EXAMPLE:

WORKING-STORAGE SECTION.

03 GET PIC X(3) VALUE "263".

03 PORT PIC 9(3) VALUE 129.

03 DATA-VAL PIC X.

PROCEDURE DIVISI¬ ON.

program. The

to be input

CALL GET USING PORT, DATA-VAL.

The PUT Subroutine

The PUT call allows a hardware port to be output from a user program.
The CALL outputs an 8 bit value to the port from a user area.

A parameter list of two variables-must be passed with CALL PUT:

The three character data-name containing the port to be written to.

* The one character data-name to be written from.

EXAMPLE:

WORKING-STORAGE SECTION.

03 PUT PIC X(3) VALUE "264".

03 PORT PIC 9(3) VALUE 131.

■

03 DATA-VAL PIC X VALUE X"2F".

PROCEDURE DIVISION.

CALL PUT USING PORT, DATA-VAL.

The ABSCAL Subroutine

The ABSCAL call allows a subroutine CALL to an absolute location. No
parameters are passed to the subroutine at the absolute address.

A parameter list of one variable must be passed with CALL ABSCAL:

The five character data—name containing the absolute address to be
cal led.

EXAMPLE:

WORKING-STORAGE SECTION.

03 ABSCAL PIC X(3)

03 ADDRESS PIC 9(5)

PROCEDURE DIVISION.

VALUE ''265".

VALUE 5.

CALL ABSCAL USING ADDRESS.

OPERATING GUIDE 4-9

h e . ESFSUB1 S ubr o u tine

his subroutine allows execution of FCS-commands or MTXSO from a COBOL
roqrami where the function of this routine depends on the value of
he first parameter.

parameter list of four variables has to be passed with CALL ESFSUB1:

If a FCS-command- (usually STATUS. COPYDISK, COPYFILE. CHANGEFILE, ERASE
ATTRIE.REORG OR EXECUTE PGM)

is to execute, the list of parameters include-

a one character routine identifier valued "I".
a max. SO character command field containing the
FCS—command as described in FCS manual Appendix II:
"filename.- unit If "Opcode C parameters!
and HEX "FF" to indicate the end of command string.
a two character return— code to receive a FCS error code
(in form of XX for 7XX).'
the result field which depends in its length on the
special command.

(AMPLE:

WORKING-STORAGE SECTION.

....... PRINT STATUS: i.'

01 FCS—COMMAND.
02 FILLER
02 FILENAME
02 FILLER
02 DRIVE
02 FILLER
02 OPCODE
02 PARAMETER
02 COMMAND-END

PIC X
PIC X(16)
PIC X
PIC 9
PIC X
PIC: X
PIC X(34)
PIC XX

VALUE """.
VALUE SPACE.
VALUE
VALUE "l".
VALUE """.
VALUE U'?".
VALUE SPACE.
VALUE X"FF".

01 ESFSUB1 PIC XX VALUE "00".

01 CALL-PARAMETER.
02 FCS-CALL
02 RETURN-CODE
02- RESULT

PIC X VALUE "l".
PIC 99.
PIC X (400).

PROCEDURE DIVISION.

CALL
IF

ESFSUB1 USING FCS-CALL. FCS—COMMAND. RETURN-CODE. RESULT.
RETURN-CODE NOT = ZERO

OPERATING GUIDE 4-10

he BSFSUB1 £'•ubrout-ine
V

,e BSFSUB1 call is used to execute MTXSO function
GET TIME) the list of four parameters include

(e. g. SET TIME OR

-* a one,character routine identifier valued "2".
a variable character field as normally passed to MTX80

from BASIC as described in MTX/30 manual/ which
contains a one character function code optionally
followed by a slash and a parameter string
and HEX "FF" to indicate the end of command string.

* a two character return—code as passed b3ck from MTXSO.
the result field which containes the result (if applicabl

XAMPLE:

WORKING-STORAGE SECTION.

*.SET DATE. . .

01 MTX-
02

•COMMAND.
MTX—CODE PIC X VALUE "C".

02 FILLER PIC X VALUE II y* II

02 MTX-PARM PIC X(17) VALUE "MM/DD/YY HH:MM:SS".
02 COMMAND-END PIC XX VALUE X "FF".

01 BSFSUB1 PIC XX VALUE "00

01 CALL-PARAMETER.
02 MTX-CALL PIC X VALUE 11211
02 RETURN-CODE PICi f in. 02 RESULT PIC XT400)

t

PROCEDURE DIVISION. •

CALL ESFSUBi USING MTX-CALL/ MTX-COMMAND, RETURN-CODE/ RESULT.
IF RETURN-CODE NOT = ZERO .

for both commands a HEX "FF" as last byte of second
parameter is mandatory.

G

NOTE :

CHAPTER 5

INCORPORATING FORMS UTILITY
PROGRAM OUTPUT

INTRODUCTION

The FORMS Utility program offers two major facilities to CIS COBOL users:

1. The user can define screen layouts to be used in a CIS COBOL
application by simply keying the text at the keyboard, and so producing
a model form on the CRT.

2. The user can automatically generate programs to manipulate data input
using the created form. In particular, indexed sequential files can be
generated and maintained automatically, and these files can, of course,
be used with CIS COBOL programs.

The FORMS Utility is available as a. separate software' package^ and' is
supported by the FORMS Utility Program Users Guide.

SCREEN LAYOUT FACILITY

The FORMS Screen Layout facility generates source COBOL Record Descriptions
for screen layouts.

MAJOR FACILITIES

Users have three major facilities available to them:

1. They may store an image copy on disk of the form they have just defined
for subsequent use in this or another FORMS run. The image can be
printed to obtain a hard copy, using the 0/S standard file print
utility program.

2. They may generate CIS COBOL source code for the data descriptions
required to define the form just created. This may then be included

into a CIS COBOL program by use of the COPY verb.

3. They may choose to generate a Check Out program which allows

duplication of many machine conversations which would take place during
a run of the application which is being designed.

CIS COBOL PROGRAMMING FOR FORMS SCREEN LAYOUTS

All that the user has to do to incorporate FORMS Screen layout output in a
program is to specify the FORMS output file name (filename.DDS) in a COBOL
COPY statement. Obviously data item names in the user program must be

specified to correspond with those generated from a user—specified base name
by FORMS. Details of FORMS name generation are given in the FORMS Utility
Program Users Guide.

EXAMPLE:

"DEMO.DDS".
5-1

000000 COPY

GENERATED PROGRAMS

The FORMS Utility generates a COBOL program which maintains data stored in
the created forms in an indexed sequential file automatically, with
automatic generation of file names from a user-supplied base name. These

CIS®Ba?Pis b“eing andards operating system under which

CIS COBOL PROGRAMMING FOR FORMS GENERATED FILES

??cS?nJial pr°§ramif1ng is squired to use FORMS generated program files in a
CIS COBOL application program. The files are processed as normal indexed
sequential files. It is worth noting that the files can be fully maintained
interactively by use of only the FORMS Utility. In addition to establishing
or deleting files, this includes the following facilities!

* Insertion of new records

Insertion of the same data in records with different keys

Display of any selected record/s (Full inquiry facility)

Insertion or amendment of records dependent on their key

Deletion of records

Read and display next record or a message if end of file detected

Terminate run

Details of the FORMS Indexed Sequential File handling facilities
in the FORMS Utility Program Users Guide.

are given

5-2

J

APPENDIX A

SUMMARY OF COMPILER AND RUN TIME DIRECTIVES

COMPILER DIRECTIVES

The general format of the command line for compilation is:

RUN COBOL:0 filename [directives]

filename is the name of the file that contains the CIS COBOL source program.

A description of the available compiler directives follows:

ANS

If ibis option is specified, the compiler will accept only those

CIS COBOL language statements that conform to the ANS 74 standard. The
default is "extended;",, which allows the CIS COBOL extensions;' and' also
relaxes the requirement for the COBOL "red tape" statements such as
DIVISION headers.

RESEQ

If specified, the compiler generates COBOL sequence numbers,

re-numbering each line in increments of 10. The default is that

sequence numbers are ignored and used for documentation purposes only.

NOINT

No intermediate code file is output. The compiler is, in effect, used
for syntax checking only. The default is that intermediate code is
output.

NOLIST

No list file is produced; used for fast compilation of "clean"
programs. The default is a full list.

COPYLIST

The contents of the file(s) nominated in COPY statements are listed.
The list file page headings will contain the name of any COPY file open
at the time a page heading is output.

NOFORM

No form feed or page headings are to be output by the compiler in the
list file. The default is headings are output.

ERRLIST

The listing is limited to those COBOL lines containing syntax errors

together with the associated error message(s). The default is a full
list.

A - 1

INT (ext e rnal-file-name)

Specifies the file to which the intermediate code is to be directed.
The default is: source-file.INT.

LIST (external-file-name)

Specifies the file to which the listing is to be directed. (This may
be a printing device, i.e. console or printer or a disk file.) The
default is: source-file.LST.

For list to console use: LIST (:C0:)

For list to line printer use: LIST(:LP:) (Parallel port)

LIST(:LS:) (Serial port)

FORM (integer)

Specifies the number of COBOL lines per page of listing (minimum 5).
The default is 60.

NOECHO

Error lines are echoed on the console unless this directive is
specified.

DATE (string)

The comment-entry in the DATE-COMPILED paragraph, if present in the

program undergoing compilation, is replaced in its entirety by the
character string as entered between parentheses in the DATE compiler
directive.

RUN TIME DIRECTIVES

The command line syntax for running a CIS COBOL object program is as
follows:

RUN RTS:n [load param] [switch param] [link param] filename [program
params]

where:

n is a drive number (3, 1 or 2

load param is one of the following:

Default (Parameter omitted)

Loads the Indexed file handling facilities and the basic Run
Time System

+D . Loads the CIS COBOL Interactive Debug extension, the Indexed
Sequential file handling facilities and the basic Run Time
System

A - 2

switch param is of general format:

[,][] _<h{d4[!’h
nl and n2

D

+ or -

are any program switch numbers (See Language
Reference Manual) in the range 0-7

invokes the standard ANSI COBOL Debug module

sets the associated switch on or off

link param

filename

is the = (equal sign) symbol which is used to link the
program with the Run Time System so that it can be

directly loaded. Note that it is important to rename
the SAVE file generated to avoid it being overwritten at
the next use of the = parameter '

is the name of the file in which the intermediate code
of the program to be loaded is stored

program params are any formats required to be passed to the program

from the Operator at load time. These are user
specific.

A - 3

3

THIS

PAGE

INTENTIONALLY

BLANK

A - 4

APPENDIX B

COMPILE-TIME ERRORS

The error descriptions that correspond to error numbers as printed on
listings produced by the CIS COBOL compiler are as follows;*

ERROR DESCRIPTION

01
02
03
04

05
06
07
08

09'
10
21
22
23
24
25
26

27

28
29
30
31

■32
33
34
36

37
38
39
40
41
42
43
44
45
46
47
48

49
50

51
52
53
54
55
56
61

62

Compiler Error

Bad lexical item: data-name
Bad lexical item: literal
Bad lexical item: character
data-name declared twice
Dictionary overflow
Illegal character in column 7
Compiler 1-0 failure

CIS COBOL extension used with ANS directive
Wrong area A/B

missing
’DIVISION* missing
’SECTION* missing

’IDENTIFICATION’ missing
’PROGRAM-ID' missing
’AUTHOR' missing

’INSTALLATION' missing

’DATE-WRITTEN' missing
’SECURITY’ missing

’ENVIRONMENT' missing
’CONFIGURATION' missing
’SOURCE-COMPUTER' missing

MEMORY SIZE/COLLATING SEQUENCE in error
’OBJECT-COMPUTER’ missing
'SPECIAL-NAMES’ missing
SWITCH Clause in error
DECIMAL—POINT Clause in error
CONSOLE Clause in error

Illegal currency symbol
’.' missing
'DIVISION' missing
’SECTION’ missing

’INPUT-OUTPUT' missing
'FILE-CONTROL' missing
'ASSIGN* missing

’SEQUENTIAL' or ’INDEXED' or 'RELATIVE' missing
'ACCESS* missing on indexed/relative file

'SEQUENTIAL/DYNAMIC’ missing
Illegal combination ORGANIZATION/ACCESS/KEY
SELECT Clause phrase unrecognised
RERUN Clause syntax error
SAME AREA Clause syntax error
file-name missing

'DATA DIVISION' missing

'PROCEDURE DIVISION' missing or unknown statement
* missing

'DIVISION' missing

B - 1

63
64

65
66
67

68
69
70

71

72

73

74

75
76

77
78

79
80

" 81

82

83
84

85
86
87
88
39

90

91
92

101
102
103

,104
105

106

107
108

109
110
111
116
117

118

119
120
140

142
143
144

145

’SECTION' missing

file-name is not selected
Record size integer missing

Illegal level number (01-49) or 01 level required
FD qualification contains syntax error

’WORKING-STORAGE' missing
’PROCEDURE DIVISION' missing or unknown statement
Data Description Qualifier or missing

SIGN/USAGE illegal with COMP data-item or unsigned
PICTURE data or incompatible with other qualifier
BLANK is illegal with non-numeric data-item

PICTURE clause too long (Numeric 18 Numeric
Edited 512 Alphanumeric 8192)
VALUE clause on non-elementary data-item, or truncation,
or wrong data type
'VALUE' in error or illegal for PICTURE type
FILLER/SYNCHRONIZED/JUSTIFIED/BLANK non-elementary

item
Level 0 or level with more than 8192 bytes
REDEFINES of unequal fields or different levels.

Data storage exceeds 64K bytes
'DYNAMIC' only allowed in non-ANS and at level 01

Data Description Qualifier inappropriate or repeated

REDEFINES data-name not declared
USAGE must be COMP, DISPLAY or INDEX
SIGN must be LEADING or TRAILING
SYNCHRONIZED must be LEFT or RIGHT
JUSTIFIED must be RIGHT
BLANK must be ZERO
OCCURS must be numeric, non-zero and unsigned
VALUE must be a literal, numeric literal or

figurative'constant
PICTURE string has illegal precedence or illegal

character
INDEXED data-name missing or already declared

numeric edited PICTURE string is too large
Unrecognised verb
If ... else mismatch
Wrong data-type
/Paragraph .name declared twice
Paragraph name same as data-name

Name required
Wrong combination of data types
Conditional imperative statement

Malformed subscript
ACCEPT/DISPLAY wrong

Bad I/O Syntax
Ifs nested too deep
Bad skeletal structure of Procedure Division

Obligatory Reserved Word missing

Subscript vector overflow
Intermediate code output buffer overflow
Inter-segment procedure name check

If ... mismatch at end of Source Input
Wrong data-type
Paragraph name undeclared
Index-name declared twice

B - 2

146

147
148

149
151
152

153
156
157
154

160

Bad cursor control
KEY declaration missing
STATUS declaration missing
Bad STATUS record

PROCEDURE DIVISION in error
USING parameter not declared in linkage section
USING parameter is not level 0L or 77

1-0 Error on auxiliary segmentation files
3ad skeletal structure of Procedure Division

USING parameter used twice in parameter list

Intermediate Code Output buffer overflow

B - 3

APPENDIX C

RUN TIME ERRORS

Run-Time error messages are preceded by the name and segment number of the
currently executing intermediate code file.

There are two types of Run-Time errors: Recoverable and Fatal.

(a) Recoverable errors

If the programmer has selected STATUS for a file then error handling is his
responsibility. This will generally only apply to errors that are not
considered fatal by the operating system.

(b) Fatal errors

All errors except those above are fatal. They may arise from the operating
system or from the Run Time System. Fatal errors cause a message to be

output to the console which includes a 3 digit error code and reference to
the COBOL statement in which it occurred. These fall into two classes:

(i) Exceptions

These cover arithmetic overflow, subscript out of
range, too many levels of perform nesting.

(ii) 1-0 errors

These exclude those for which STATUS is not selected
as above.

Error Description

151
152

153
154

155
156
157
15 8

159
160
161
162

Random read on sequential file

REWRITE or DELETE on file not open I—0
Subscript out of range
Perform nesting exceeds 22 levels
Illegal command line
Invalid file operation
Object file too large
REWRITE on line-sequential file
Malformed line-sequential file

Overlay loading or chaining error
Illegal intermediate code
Arithmetic overflow or underflow

164
165

Specified CALL code not supplied
Incompatible releases of compiler and
Run Time System

APPENDIX D

OPERATING SYSTEM ERRORS

These errors appear in the same format as the CIS COBOL errors
conventionally error numbers 1-99 are reserved for the operating system

Error Description

4

5
6
7
8

11
12

13
14
24

30

33
38

Illegal file name
Illegal device specification
Attempt to write to input file
Insufficient diskette space
Attempt to read from file opened for output
REWRITE or DELETE sequence error
Attempt to open file already open

Attempt to open for input a non-existant file
Protection error
Disk sy'stea error

Drive not ready

Bad parameter to file system
File full

APPENDIX E

COMMAND

A data-ref val

C val

D data-ref

G proc-ref

L

M name

P

S data-ref

T proc-ref

X

$

/

. val

where:

INTERACTIVE DEBUG COMMAND SUMMARY

EFFECT

Change value at address given to val
(data division)

Display ASCII character corresponding
to val

Display 16 bytes from address given

Execute from current position until
given address is reached

Output carriage return/line feed to
console

Start definition of macro

Display current program counter

Set work register to address given

Trace all paragraphs executed up to
address (procedure division)

Execute one instruction

End macro definition

Display byte at address in work register

Change byte at address in work register
to val and increment register

Increment work register

Start comment - line up to carriage

return is ignored

data-ref

proc-ref

val

name

16 bit hex value (4 digits)
in data area

16 bit hex value (4 digits)
in code area

8 bit value (2hex digits or
inverted commas and ASCII
char eg "A)
single ASCII character

E - 1

APPENDIX F

BOS DISK FILES

GENERAL

The disk file system used in CIS COBOL is the BOS file control system
described in the BOS Users Manual. A description of file creation and
management is available in that manual.

a

CIS COBOL offers sequential, relative and indexed organizations.

All file processing information is defined within an interactive CIS COBOL

program. File organization, access method, device assignment and allocation
of disk space are defined by the SELECT statement in the INPUT-OUPUT SECTION
of the ENVIRONMENT DIVISION and an FD entry in the FILE SECTION of the DATA
DIVISION.

SPECIFYING FILES

CIS COBOL offers fixed (compile time) file assignment and dynamic (run time)
file assignment facilities.

FIXED FILE ASSIGNMENT

The CP/M file name is assigned to the internal user file—name at compile
time as shown in the specifications that follow.

F - 1

Environment Division

In the FILE-CONTROL paragraph the general format of the SELECT and ASSIGN TO
statements is as follows:-

General Format

SELECT file—name

ASSIGN TO external-file-name-literal
file-identifier

[
(external-file-name-literal)

*• \ file-identifier /

Parameters

filename

external-file-name-literal

Can be any user-defined
CIS COBOL word (see User
Defined COBOL Words in Chapter
2)

Is a standard CP/M file name of

the following general format:

filename ext ension
4

device

t
a BOS drive number preceded by a colon.
FO through F3 - Diskette drives

(Equivalent to
0: through 2:)

LP - Line printer

(Parallel port)
LS - Line printer

(Serial port)
Cl - Console input
CO - Console output

1-3 alphanumeric characters

1-6 alphanumeric characters
File-identifier See Run Time file Assignment

later in this Appendix

Examples of Fixed File Assignment

SELECT STOCKFILE

ASSIGN TO "WAREHS.BUY:!".

SELECT STOCKFILE

ASSIGN TO ": F1:WAREHS.BUY

F - 2

Data Division

The file-name specified as above is then used in the File Description for
that program (see The File Description - Complete Entry Skeleton in Chapters
5, 6 and 7 of the CIS COBOL Language Reference Manual)

Procedure Division

The file-name specified as above is then also used in the OPEN and CLOSE
statements when the file is required for use in the program. (See THE OPEN
STATEMENT and THE CLOSE STATEMENT in Chapters 5, 6 and 7 of the CIS COBOL
Language Reference Manual).

RUN-TIME FILE ASSIGNMENT

The internal user file-name is assigned to a file-identifier (an
alphanumeric user—defined COBOL Word), which automatically sets up a
PIC X(25) data area in which to store the external BOS file name. The
external BOS file name can then be stored in this data area in the Procedure
Division by the user, and can be altered during the run as required',’

The following specifications are required for run-time assignment:

Environment Division

In the FILE-CONTROL paragraph the general format of the SELECT and ASSIGN TO
statements is as follows:

General Format

SELECT filename

ASSIGN TO fileidentifier

Parameters

file-name

file-identifier

Example of Run-Time File Assignment

Can be any user-defined
CIS COBOL word. (See User
defined COBOL Words in Chapter

2 of the CIS COBOL Language
Reference Manual).

Is any user-defined CIS COBOL
word (See User Defined COBOL
Words in Chapter 2 of the
CIS COBOL Language Reference
Manual).

SELECT STOCKFILE

ASSIGN STOCKNAME.

¥

F - 3

Data Division -

The file-name specified as above is then used in the File Description for

that program (see THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON in Chapters
5, 6 and 7 of the CIS COBOL Language Reference Manual).

Procedure Division

The external 0/S file name of the required file (see under FIXED FILE
ASSIGNMENT above for format) is then stored as required in the
filfi-identifier location specified above by the user program before the file
is OPENed for use.

EXAMPLE:

'VAREHS.BUY:1" TO STOCK-NAME.
INPUT STOCK-FILE.

> 7

STOCK-FILE.

’VAREHS.SEL:1" TO STOCK-NAME.
INPUT STOCK-FILE.

STOCK-FILE.

"PROGA.SRC:1" TO file-identifier.
INPUT file-name.

The BOS file name could have been entered via an ACCEPT statement i.e. by an
operator, or stored as any other variable data.

In this way different external files can be used as a common internal user
file during any run of a program, but care is required to ensure that the
correct file is allocated at any given time.

NOTE:

The device assignment :1 in the file name above can be replaced by the
format :F1: for compatability with other operating systems.

MOVE
OPEN

CLOSE

MOVE

OPEN

CLOSE

MOVE
OPEN

F - 4

SETTING BAUD RATE

If :LS: has been specified as an output device, you will need to set the
baud rate on switch bank 1 as shown in the BOS Users Manual. Note that CIS

COBOL always transmits with no parity, 8 data bits and one stop bit (i.e.
only the baud rate is read from the switches).

F - 5

APPENDIX G

EXAMPLE OF USER RUN TIME SUBROUTINES

*

*

* THIS IS AN EXAMPLE OF USER CALL CODE SUPPLIED PURELY FOR GUIDANCE OF THE
* USER TO ENABLE THE MECHANICS OF CALL CODE INSERTION TO BE BETTER
* UNDERSTOOD.

* THE CODE IS DESIGNED TO BE A USEFUL EXAMPLE OF CALL, AND IF IMPLEMENTED
* WILL ALLOW THE COBOL PROGRAMMER TO CREATE 16 BIT BINARY QUANTITIES FROM
* UP TO 5 ASCII DIGITS, AND VICE VERSA. THE USE IS EXPLAINED IN MORE DETAIL
* AT THE HEAD OF EACH ROUTINE.
*

* MICRO FOCUS LTD. HAS TAKEN EVERY PRECAUTION TO ENSURE THE ACCURACY OF
* THESE ROUTINES, BUT CANNOT BE HELD LIABLE IN ANY WAY FOR ANY ERRORS OR
* OMISSIONS IN THEM.
*

A**.
* THE MODULE MUST BE LOCATED AT THE ADDRESS SPECIFIED BY CONFIGURATOR
* WHEN THE RTS IN WHICH THE CODE IS TO RESIDE WAS CONFIGURED. (SEE
* OPERATING GUIDE, SECTION 5).
*

BASE: EQU 04404H ;REPLACE 04404H BY THE ADDRESS

;GIVEN BY CONFIGURATOR.
• *
9

• jfc
9

ORG BASE ;SET THE BASE ADDRESS
;*

* NOW FOLLOWS THE CALL CODE IDENTIFICATION TABLE. THIS IS A TABLE OF
* ADDRESSES OF THE ENTRY-POINTS TO THE ROUTINES. PRECEDED BY A BINARY
* 8 BIT ITEM SPECIFYING THE HIGHEST AVAILABLE ROUTINE NUMBER

;*
;*
CALTOP: DB MAXNO ;HIGHEST AVAILABLE CALL ROUTINE

DW 0 ;CALL 't»0" (DOES NOT EXIST)
DW DECBIN ;CALL "01" - DECIMAL

ASCII TO BINARY

DW BINDEC :CALL "02" - BINARY TO
DECIMAL ASCII
MAXNO: EQU

;*
;*

($ -CAL TOP-3)/2 ;LET THE ASSEMBLER DO THE WORK

9

;* NB. ALTHOUGH THE USE OF CALL "00" IN THE ABOVE EXAMPLE WOULD CAUSE
;* THE RTS TO ISSUE THE FOLLOWING ERROR:-

J* 164 - CALL CODE DOES NOT EXIST
;* THE USER IS AT LIBERTY TO PROVIDE HIS OWN CODE. BY PLUGGING IN
;* THE APPROPRIATE ROUTINE ADDRESS.
• *
9

;* SIMILARY, OTHER ROUTINES MAY BE ADDED BY INCREASING THE NUMBER'
;* OF ADDRESSES SPECIFIED. IF THESE ARE ADDED BEFORE THE MAXNO EQUATE
;* THEN THE BYTE AT CALTOP WILL ALWAYS BE CORRECT
• *

G - 1

;*ROUTINE: DECBIN
• *
)

;*CALLING SEQUENCE:

?* CALL "01" USING PARA1 PARA2 PARA3.
•

;*FUNCTI0N: THIS ROUTINE CONVERTS A STRING OF DECIMAL (ASCII)

J* DIGITS INTO A 16 BIT BINARY QUANTITY. IT IS VERY LOW LEVEL
»* IN THAT IT EXPECTS A POSITIVE DECIMAL VALUE
• A
)

;*PARAMETERS: PARA1 - ADDRESS OF LENGTH OF DECIMAL STRING

»* HELD AS 1 BYTE ASCII DIGIT (NOT CHECKED)
;* THIS ADDRESS WILL BE NO. 2 ON STACK
• * >
J* PARA2 - ADDRESS OF DECIMAL STRING

J* THIS ADDRESS WILL BE IN B,C ON ENTRY
l ^

5* PARA3 - ADDRESS OF RESULT AREA.
;* SPECIFIES A 2 BYTE AREA
5* THIS ADDRESS WILL BE IN D,F ON ENTRY
• *
9

;*VALUES RETURNED: 16 BIT RESULT IN PARA3
• *
>

• *

;*
DECBIN:

• *
»

DEC10:

POP

XTHL

H ;GET RETURN ADDRESS OFF STACK
;GET ADDRESS OF PARA1
jPUTTING RETURN ADDRESS BACK.

MOV A,M ;PUT IT IN ACCUMULATOR
ANI OFH ;CONVERT TO BINARY

PUSH D ;SAVE ADDRESS OF RESULT
PUSH B ;MOVE STRING REF
POP D ; INTO D,E
LXI H,0 ;HL 1 BINARY ACCUMULATOR

PUSH PSW ;SAVE THE COUNT
DAD H ;BINARY ACCUMULATOR *2
MOV B,H ; AND MOVE IT INTO B,C
MOV C,L »

DAD H ;BINARY ACCUMULATOR *4
DAD H ; *8
DAD B ; *8 + *2 1 *10

(IE. 8X + 2X 1 10X)

1

LDAX D ;GET THE DECIMAL CHAR

INX D

ANI OFH ;CONVERT TO BINARY CHAR
MVI B ,OH

MOV C,A
DAD B ;ACC + CHAR
POP PSW
DCR A ;KEEP COUNT
JNZ DECIO

•*
• *

NOW STORE RESULT IN USER'S AREA.

XCHG ;PUT RESULT IN D,F .
POP H ;GET ADDRESS OF RESULT AREA
MOV M,D ;STORE MS BYTE
INX H
MOV
RET

.* »

M,E ;STORE IS BYTE

;*ROUTINE:
. *

BINDEC

•^CALLING SEQUENCE:
• *
• *

CALL "02" USING PARA1 PARA2.

;*FUNCTION: TAKES THE BINARY QUANTITY ADDRESSED BY PARA1 AND
• * IT INTO A 5 DIGIT DECIMAL (ASCII) NO. THE RESULT
• *
. *

IN THE AREA SPECIFIED BY PARA2.

; *PARAMETERS: PARA1 1 ADDRESS OF 16 BIT (2 BYTE) QUANTITY.
WILL BE IN REG B,C ON ENTRY

PARA2 1 ADDRESS OF 5 BYTE RESULT AREA.

WILL BE IN REG D,E ON ENTRY

*VALUES RETURNED:

5 DIGIT ASCII VALUE IN PARA2.

BINDEC:
PUSH B GET VALUE ADDR
POP H IN H,L
MOV B,M VALUE
INX H IN
MOV C,M B,C
LXI H,0 PUSH CONSTANTS
PUSH H ON TO
LXI H.-10 STACK
PUSH H FOR USE
LXI H.-100 DURING

• * »
PUSH H BINARY TO DECIMAL COVERSION
LXI H,-1000
PUSH H
LXI H,-10000 '

G - 3

PUSH H

;* ;D,E 1 ADDRESS OF RESULT FIELD
CN25:

MVT A,30H ;SET TALLY TO ASCII ZERO
CN30:

POP H ;GET THE CONSTANT
PUSH H ;RESTORE IT
DAD B ;SUBTRACT FROM SOURCE OP
JNC CN40 ;ITS GONE NEGATIVE
INR A ;INC TALLY

PUSH H ;REPLACE B,C WITH
POP B ; NEW RESULT
JMP CN30

CN40:
POP H ;CLEAR CONSTANT OFF STACK
STAX D ;STORE TALLY IN RESULT FIELD
I NX D ;INC RESULT ADDR POINTER
POP H ;ANY MORE CONSTANTS ,
MOV A,L
ORA H
JZ CN50 ;NO - FINISH OFF
PUSH H ;YES - RESTORE IT
JMP CN25

C50:

MOV A,C ;INSERT UNITS
ADI BOH ;CONVERT TO ASCII
STAX D
RET ;RETURN

*

*

G - 4

APPENDIX H

SUPPLIED CALL CODE ROUTINES
EXAMPLE

**CIS COBOL V3.3 CALLEX.CBL
**

IDENTIFICATION DIVISION
PROGRAM-ID CALL-EXAMPLE.

000010
000020
000030*
000040*
000050*
000060*
000070*

000080 DATA DIVISION.

000090 WORKING-STORAGE SECTION.
000100 01 ROUTINE-NAMES

This dummy program has been produced by Micro Focus
as an example of the way in which the supplied CALL
code routines may be used.

PAGE: 0001

000F
000F
000F
000F
000F
000F
000F
000F
000F

000F
000110 02 DECIMAL-BINARY PIC X(2) VALUE "01". 000F
000120 02 BINARY-DECIMAL PIC X(2) VALUE "02". 0011
000130* 0013
000140 01 PARAMETER-FIELDS 0013"
000150 02 DE CIMAL-NUMBER-LENGTH PIC 9 VALUE '4. 0013
000160 02 DECIMAL-NUMBER PIC 9(4) VALUE 1234. 0014
000170 02 BINARY-RESULT PIC X(2). 0018
000180* 001A
000190 02 BINARY-NUMBER PIC X (2) VALUE X"04D2". 001A
000200 02 DECIMAL-RESULT PIC 9(5). 001C

000220 PROCEDURE DIVISION.
000230* The following CALL will convert the 4 digit numeric field
000240* DECIMAL-NUMBER to a 16 bit binary quantity in BINARY-RESULT.
000250**

000260 CALL DECIMAL-BINARY USING DECIMAL-NUMBER-LENGTH
000270 DECIMAL-NUMBER BINARY-RESULT.
000280**

000290* BINARY-RESULT now contains the binary number 04D2.
000300*

000310* The following CALL will convert the 16 bit binary field
000320* BINARY-NUMBER to a 5 digit DECIMAL-RESULT
000330***

000340 CALL BINARY-DECIMAL USING BINARY-NUMBER DECIMAL-RESULT.
000350***

000360* DECIMAL-RESULT now contains the value 01234.

**CIS COBOL V4.2 COMPILER COPYRIGHT (C) 1978 MICRO FOCUS LTD URN AA/3999/A

**ERRORS=00000 DATA=00033 CODE=00043 DICT=00188:29624 END OF LIST

0021
0000
0000
0000
0000
0000
0000
00 0A
000A

00 OA
000A
000A
000A
000A
0012
0012

